Strategyproof classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for strategyproof classification

Article history: Received 25 September 2011 Received in revised form 12 March 2012 Accepted 26 March 2012 Available online 27 March 2012

متن کامل

Strategyproof Classification with Shared Inputs

Strategyproof classification deals with a setting where a decision-maker must classify a set of input points with binary labels, while minimizing the expected error. The labels of the input points are reported by self-interested agents, who might lie in order to obtain a classifier that more closely matches their own labels, thus creating a bias in the data; this motivates the design of truthfu...

متن کامل

Tight bounds for strategyproof classification

Strategyproof (SP) classification considers situations in which a decision-maker must classify a set of input points with binary labels, minimizing expected error. Labels of input points are reported by self-interested agents, who may lie so as to obtain a classifier more closely matching their own labels. These lies would create a bias in the data, and thus motivate the design of truthful mech...

متن کامل

Strategyproof Classification under Constant Hypotheses: A Tale of Two Functions

We consider the following setting: a decision maker must make a decision based on reported data points with binary labels. Subsets of data points are controlled by different selfish agents, which might misreport the labels in order to sway the decision in their favor. We design mechanisms (both deterministic and randomized) that reach an approximately optimal decision and are strategyproof, i.e...

متن کامل

Strategyproof Linear Regression

Designing machine learning algorithms that are robust to noise in training data has lately been a subject of intense research. A large body of work addresses stochastic noise [12, 7], while another one studies adversarial noise [11, 2] in which errors are introduced by an adversary with the explicit purpose of sabotaging the algorithm. This is often too pessimistic, and leads to negative result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM SIGecom Exchanges

سال: 2011

ISSN: 1551-9031

DOI: 10.1145/2325702.2325708